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Abstract: In this paper, an iterative finite element model
updatingmethod in structural dynamics is proposed. This
uses informationmatrices and element connectivitymatri-
ces to reconstruct the corrected model by reproducing the
frequency response at measured degrees of freedom. Indi-
cators have been proposed to quantify the mismodelling
errors based on a development in Lagrange matrix inter-
polation. When applied on simulated truss structures, the
model gives satisfactory results by detecting and quantify-
ing the defaults of the initial model.
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1 Introduction
Finite element model updating is a technique that im-
proves the correlation between themeasured data and the
theoretical prediction. A significant number of methods
exist. These methods can be classified into two categories,
namelydirectmethods and iterativemethods.Directmeth-
ods are also called basic reference methods, and they re-
produce the experimental measurement so that it can be
used later; these methods do not localize the modelling
errors. Iterative methods are also called parametric iden-
tification by updating; these methods are more interesting
because not only they correct the model, but also they ex-
press these corrections by parameters.

The majority of direct methods are developed at the
end of the 1970s and the beginning of the 1980s. Thanks
to their advantage, these methods are always used and
have witnessed major developments. The first developed
methods used Lagrange multiplier constraints in the min-
imization of cost functions [1–3]. Other methods called
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error matrix methods [4, 5] are used to estimate directly
the errors on the mass and stiffness matrices, and inverse
techniques are also exploited in this field [6–9]. Iterative
methods are usually cost functionmethods [10–14] ormin-
imal variation methods [15–17]. In addition to the preced-
ing methods, other specific methods exist. Some meth-
ods use genetic algorithms to find global minima or max-
imum [18, 19], while other methods use perturbed bound-
ary conditions [20–23].

Incomplete experimental measurements in terms of
frequency band and a number of degrees of freedom show
that updating cannot often be applied to all the parame-
ters of the system. The choice of measurements and the
parameters to be corrected as well as the model reduction
or expansionmethod is of primary importance for the suc-
cess of the updating procedure. Several types of measure-
ments can be used (natural frequencies, Eigen-modes, fre-
quency response functions,. . . ). They have different sensi-
tivities on the updating parameters.

In this paper, a direct updating method using fre-
quency responsemeasurements refinedbyan iterative sys-
tem is proposed, which allows detecting and localizing
modelling errors.

2 Updating method
***For a linear damped system, the dynamic characteris-
tics are describedbya set of secondorder differential equa-
tions in time domain

Ma ÿa�t� � Da ẏa�t� � Kaya�t� � f�t� (1)

where Ma, Da and Ka are respectively the mass, damp-
ing and stiffness real symmetric n by n matrices, the re-
sponse functions ya�t�, ẏa�t�, ÿa�t� are respectively the
displacement, velocity and acceleration vectors, f(t) is the
excitation force vector. Index “a” express analytical initial
model.

This system can be analysed for its harmonic response
properties by assuming that ya�t� � Yaest and f�t� � Fest
with s = iω. This lead to

�s2Ma � sDa � Ka� Ya � F (2)
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Where Za�s� � �s2Ma � sDa � Ka� is the damping stiff-
ness matrix. The frequency response function matrix is
written as Ha�s� � Z�1a �s�

The updating process consists in determining the new
updatedmatricesMu,Du andKu,which reproduces the fre-
quency response measurements Yx, according to the har-
monic response

�s2Mu � sDu � Ku� Yx � F (3)

For this purpose consider the relation between the mea-
sured and analytical responses

Ya � P�s�Yx (4)

Where P is an unknown information matrix between the
analytical responses and themeasuredones.When the ini-
tialmodel is wellmodellized the two sets of response func-
tion are very close and the information matrix is sensibly
equal to identity matrix.

Index “x” expresses themeasurements, and index “u”
expresses the updated components.

Introducing expression Eq. (4) in Eq. (2) and equaliz-
ing with Eq. (3) we have

F � Za�s�P�s�Yx � Zu�s�Yx (5)

P�s� � Z�1a �s�Zu�s� (6)

For s = 0, we have

P�0� � Z�1a �0�Zu�0� (7)

P�0� � K�1a Ku (8)

We deduce the updated stiffness matrix

Ku � KaP�0� (9)

The first derivative with respect to variable “s” of the infor-
mation matrix for s = 0 is

Ṗ�0� � Ż�1a �0�Zu�0� � Z�1a �0�Żu�0� (10)

Ṗ�0� � ��Z�1a �0�Ża�0�Z�1a �0�� Zu�0� � Z�1a �0�Żu�0�
(11)

Ṗ�0� � ��K�1a DaK�1a �Ku � K�1a Du (12)

From what, we can deduce the updated damping matrix

Du � Ka �Ṗ�0� � �K�1a DaK�1a �Ku� (13)

Introducing Eq. (9) in this equationwe canfinallywrite the
updated damping matrix as a function of the information
matrix and its first derivative as follow

Du � Ka Ṗ�0� � DaP�0� (14)

The expression of the updatedmassmatrix is derived from
the second derivative according to variable “s” of the infor-
mation matrix P

P̈�0� � Z̈�1a �0�Zu�0��2Ż�1a �0�Żu�0��Z�1a �0�Z̈u�0� (15)

After derivation and development the above equation be-
comes

P̈�0� � �2K�1a �Ma � DaK�1a Da�K�1a Ku (16)

� 2 ��K�1a DaK�1a �Du � 2K�1a Mu

From what we can deduce the updated mass matrix

Mu � Ka
⎨⎝⎝⎝⎝⎪
1
2
P̈�0� � K�1a �Ma � DaK�1a Da�K�1a Ku (17)

� �K�1a DaK�1a �Du
⎬⎠⎠⎠⎠⎮

This can be expressed in terms of P and her first and sec-
ond derivatives as follow

Mu �
1
2
Ka P̈�0� � Da Ṗ�0� �MaP�0� (18)

Finally we have the updated unknown matrices

Ku � KaP�0�

Du � Ka Ṗ�0� � DaP�0�

Mu �
1
2
Ka P̈�0� � Da Ṗ�0� �MaP�0�

The updatingmethod is performed when the informa-
tion matrix P and its derivatives Ṗ and P̈ are known. It is
well indicated that these matrices are to be determined
from the measurement components.

3 Expression for the information
matrices

The principal idea in this section is to interpolate the in-
formationmatrices for each s-value using Eq. (4). Suppose
that “m”measurements are performed for a set of complex
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frequencies �s0, s1, s2, . . . , sm�1, sm�, we have then “m”
equation of the form

Ya�si� � P�si�Yx�si� (19)

Fromwhat, we can estimate the informationmatrix for the
complex frequency si

P�si� � �Ya�si�YTx �si�� �Yx�si�YTx �si���1 (20)

Toavoid ill-conditionedmatrices thepart �Yx�si�YTx �si���1
in Eq. (20) is approximated by �Ỹx .ỸTx ��1, where Ỹx is a
modulated matrix of all measured responses. This matrix
is constructed so that it has maximum rank and minimal
condition number. From the matrix of all measured re-
sponses the response vector witch do not rise the rank of
thematrix is eliminated, and in the sameway the response
vector witch perturbs the condition number of the matrix
is also eliminated.

The information matrix P is expressed in terms of
P�si� using Lagrange polynomial interpolation applied to
n by n matrices. The formulation is then

P�s� � m
Q
i�1
Li�s�P�si� (21)

with
Li�s� � m

M
j�1
jxi

s � si
si � sj

(22)

This leads to final polynomial form of

P�s� � sm�1Am�1 � sm�2Am�2 � ... � s2A2 � sA1 (23)
� A0

From what, we can deduce

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

P�0� � A0
Ṗ�0� � A1
P̈�0� � 2A2

(24)

This discretization is used instead of the full information
matrix which uses simultaneously all the response func-
tions to avoid ill-conditioned problems and bad pseudo-
inverse. In fact, in the interpolation process, information
matrix for any complex frequency si which poses a bad
pseudo inversewill be eliminated and thus the polynomial
formof Eq. (23) is cleaned fromall ill-conditioned informa-
tion matrices.

Finally, the updated mass, damping and stiffness ma-
trices are

Ku � KaA0 (25)

Du � KaA1 � DaA0 (26)

Mu � KaA2 � DaA1 �MaA0 (27)

The updating method is refined by an iterative system
which computes and replaces the analytical matrices by
the updated matrices at each iteration until P(s) is equal
to identity (A0 � I, A1 � 0, A2 � 0).

4 Error localization
It is important to localize modelling errors in the initial
matrices. This step consists then in the splitting of the up-
dated matrices to compare with the corresponding split-
ting of the initial matrices. It is well established that the
initial global matrices are assembled by a summation of
the corresponding mass, damping and stiffness elemen-
tary matrices using connectivity elementary matrices. For
example the global mass matrix is written

Ma �
N
Q
i�1
CeTi MeiCei (28)

Where Cei are the connectivity elementary ne by n matri-
ces, Mei are the mass elementary ne by ne matrices, N is
the total number of elements in the structure, and ne is
the number of degrees of freedom of each element, know-
ing that n is the total number of degrees of freedom of the
structure.

The inverse of the assemblage principle is used to split
the global matrices toN elementary sub-matricesMui,Dui
and Kui ne by ne respectively for the updatedmass, damp-
ing and stiffness matrices, and Mai, Dai and Kai for the
initial corresponding matrices. This is summarized by the
following equations

Kui � CeiKuCeTi (29)

andKai � CeiKaCeTi

Dui � CeiDuCeTi (30)

and Cai � CeiDaCeTi

Mui � CeiMuCeTi (31)

andMai � CeiMaCeTi

It is important to indicate that the splitting initial matrices
are different from the elementary matrices; these are sim-
ply used to quantify the initial state. Finally for each ele-
ment of the structure the comparison between the initial
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and the updated situation can be performed by quantify-
ing the differences

∆Ki � Kui � Kai (32)

∆Di � Dui � Dai (33)

∆Mi � Mui �Mai (34)

To have a scalar quantification of the severity of modelling
errors various matrix norms can be used. In our case we
use the following form

Eki �
�neP
j

ne
P
k
∆Ki�j, k�

2�
1⇑2

ne2
(35)

Where Eki is the stiffness error in the ith element. The
damping errors Edi and the mass errors Emi are also cal-
culated with similar forms.

Edi �
�neP
j

ne
P
k
∆Di�j, k�

2�
1⇑2

ne2
(36)

Emi �

�neP
j

ne
P
k
∆Mi�j, k�

2�
1⇑2

ne2
(37)

5 Application
To evaluate the effectiveness of the proposed method we
consider the truss structure Figure 1 witch is discretized
into 16 finite elements and 24 degrees of freedom. This
later is considered made of material with Young’s modu-
lus E=2.1�1011Pa andmass density ρ=7800 kg/m3. To sim-
ulate the real structure, modelling errors are introduced
in the sixth element increasing the Young’s modulus to
E6=2.3�1011Pa and in the twelfth element reducing the
mass density to ρ12=6630kg/m3. The damping is assumed
to be proportional to the mass and stiffness. A vertical
time-harmonic transverse force is applied on the junction
of beams 13, 14 and 16.

To simulate real measurements, 5% random noise is
added to the simulated response functions of the struc-
ture.

Figure 2 shows that the introduced errors are localized
and quantified. In fact the mass error modelling of 15%
is detected in the twelfth element, and the stiffness mod-
elling error of 10% is also detected in the sixth element.

Figure 1: Simulated truss structure

Figure 2: Damage localization

6 Conclusion
A global iterative finite elementmodel updatingmethod is
proposed using information matrices and Lagrange poly-
nomial interpolation. An iterative procedure is performed
to refine the results. To detect the modelling errors or any
damage in the structure, the global updated matrices are
decomposed by a splitting procedure based on the inverse
of the assemblage technique. This uses the connectivity el-
ementary matrices. To avoid bad pseudo-inverse of a full
information matrix, this last is parametrized by informa-
tion matrices at each complex frequency, this allows us to
eliminate any ill-conditioned matrix.

This global iterative technique is tested on simu-
lated structures shows interesting results for finite element
model updating of damped systems.
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